
Subject: Principles of Programming Languages (POPL) Course Code: COMP 301 

Type: Core  

Course Description: 
 

This course will introduce many of the principles of programming language design and 

implementation via comparative studies of programming languages thus providing an insight to 

the different programming language concepts and constructs. Different programming paradigms 

– Procedural, functional, logic etc. would also be covered. 
 

Course Objectives: 

 
 To provide an introduction to formalisms for specifying syntax and semantics of 

programming languages, including an introduction to the theory of formal languages; 

 To provide an exposure to core concepts and principles in contemporary programming 

languages, and 

 To explore various important programming methodologies, such as functional 

programming, logic programming, programming with abstract data types 

 

Text book: Concepts of Programming Languages, Eighth Edition. Robert W. Sebesta. Pearson 

Education, Inc. 

 
References for further readings: 

 

Programming Languages Design and Implementation, Fourth Edition. Terrence W. Pratt, 

Marvin V. Zelkowitz. Pearson Education, Inc. 

Programming Languages: Concept and Constructs, Second Edition. Ravi Sethi. Addision- 

Wesley. 

Essentials of Programming Languages, Second Edition. Daniel P. Friedman, Mitchell Wand and 

Christopher T. Haynes. MIT Press. 



Lectures: 
 

Lecture 1: 
 

Introduction 
 

Reasons for Studying Concepts of Programming Languages 

Programming Domains 

Language Evaluation Criteria 

Influences on Language Design 

Language Categories 

Language Design Trade-offs 

Implementation Methods 

Programming Environments 

Lecture 2: 
 

Evolution of the Major Programming Languages  

Lecture 3 

Describing Syntax and Semantics 
 

Introduction 
 

The General Problem of Describing Syntax 

Formal Methods of Describing Syntax 

Attribute Grammars 

Describing the Meanings of Programs: Dynamic Semantics 



Lecture 4: 
 

Lexical and Syntax Analysis 
 

Introduction 

Lexical Analysis 

The Parsing Problem 

Recursive-Descent Parsing 

Bottom-up Parsing 

Lecture 5: 
 

Names, Bindings, Type Checking, and Scopes 
 

Introduction 

Names 

Variables 

The Concept of Binding 

Type Checking 

Lecture 6 
 

Type Checking and Scopes continued… 
 

Strong Typing 

Type Equivalence 

Scope 

Scope and Lifetime 

Referencing Environments 

Named Constants 



Lecture 7 

Data Types 

Introduction 

Primitive Data Types 

Character String Types 

Array Types 

Associative Arrays 

Record Types 

Union Types 
 

Pointer and Reference Types 
 

Lecture 8 
 

Expression and Assignment Statements 
 

Introduction 

Arithmetic Expressions 

Overloaded Operators 

Type Conversions 

Relational and Boolean Expressions 

Short-Circuit Evaluation 

Assignment Statements 

Mixed-mode Assignment 
 

Lecture 9 

Subprograms 

Introduction 
 

Fundamentals of Subprograms 

Design Issues of Subprograms 



Local Referencing Environments 

Parameter- Passing Methods 

Parameters That Are Subprograms 

Lecture 10 
 

Subprograms continued… 

Overloaded Subprograms 

Generic Subprograms 

Design Issues for Functions 

User-Defined Overloaded Operators 

Coroutines 

Lecture 11 
 

Implementing Subprograms 
 

The General Semantics of Calls and Returns 

Implementing “Simple” Subprograms 

Implementing Subprograms with Stack-Dynamic Local Variables 

Nested Subprograms 

Blocks 
 

Implementing Dynamic Scoping 
 

Lecture 12 
 

Abstract Data Types and Encapsulation Constructs 
 

The Concept of Abstraction 

Introduction to Data Abstraction 

Design Issues for Abstract Data Types 

Language Examples 

Parameterized Abstract Data Types 



Encapsulation Constructs 

Naming Encapsulations 

Lecture 13: 
 

Functional Programming Languages 
 

Introduction 

Mathematical Functions 

Fundamentals of Functional Programming Languages 

The First Functional Programming Language: LISP 

COMMON LISP 

ML 
 

Haskell 
 

Applications of Functional Languages 
 

A Comparison of Functional and Imperative Languages 
 

Lecture 14 
 

Logic Programming Languages 
 

Introduction 
 

A Brief Introduction to Predicate Calculus 

Predicate Calculus and Proving Theorems 

An Overview of Logic Programming 

The Origins of Prolog 
 

The Basic Elements of Prolog 

The Deficiencies of Prolog 

Applications of Logic Programming 


