Program Semester Design – MTech in AI

First Semester	4 courses*3 credit = 12 credit	3 core course, 1 elective
Second Semester	4 courses*3 credit = 12 credit	1 core course, 3 elective
Third semester	2 courses*3 credit = 6 credit	1 guided, 1 seminar
Fourth semester	Thesis = 15 credit	Total = 45 credit

List of Courses

Core Courses	Elective/Guided courses		
Computational Statistics and Probability	Fuzzy systems		
Artificial Intelligence	Deep Learning		
Machine Learning	Big Data Analytics (Bio, Health, WSN, Social Network, Financial Time series analysis)		
Deep Neural Networks	Internet of Thing(Internet of Vehicle, Internet of Health, Internet of people)		
Optimization Techniques	Evolutionary Computation		
Intelligent systems	Computer Vision		
Statistical Methods for AI applications	Image Processing		
	Knowledge Representations and Reasoning		
Predictive Modeling	Natural Language Processing		
Data Analytics	Recommendation System		
Computational Intelligence	Discrete Multivariate Modeling		
Probabilistic Graphical Models	Intelligent Information Retrieval		
	Expert System Design		
	Data Acquisition Management Systems		
	Robotic Design		

Computational Numerical Methods	
Human Computer Interaction	
Software Design	
Problem Solving Agent	
Predictive Modeling	
Computational Numerical Methods	
Topics in AI	
Topics in Data Science	
AI and Society	
Research Techniques for Computer Science	
Quantum Computing	
1 • 1• • 1 1 1 1 1	

- All courses are assumed to be 3-credit hours and individual courses may be designed including theoretical and lab sessions within the 3-credit hours.
- The subject committee can pick the type of the courses (either core or elective) to be offered for the program from the table above.

Four Semester Plan (starting for September 2021)

Semester I	Semester II	Semester III	Semester IV
Core C	Courses		
 AIMA 500 - Computational Statistics and Probability [3] AICC 500 - Artificial Intelligence [2+1] AICC 502 - Data Analytics [2+1] 	 AICC 504 - Deep Neural Networks [2+1] 	 AIRW 621 - Seminar Course[3] AIRW 651 - Guided Course [3] Note: Thesis starts in this semester itself so that students can work for one whole year for the thesis. 	AIRW 699 - Thesis Completes [15]

Elective Courses			
(Any one)	(Any three)		
 Elective1 [3] Elective2 [3] 	2.Elective3[3]		
	3.Elective4[3]		
	4.Elective5 [3]		
	5.Elective6[3]		
12 Credit	12 Credit	6 Credit	15 Credit

Brief overview of some courses:

Computational Statistics and Probability [3]: The aim of this course is to provide the statistical analysis of data using modern computational methods to the students. Probability, descriptive statistics, inferential statistics and computational methods such as simulations, sample distributions, shuffling, bootstrapping, and cross-validation would be the main content in this course.

Artificial Intelligence [2+1]: The aim of this course is to provide the techniques and technologies that will help students to master the foundational knowledge of AI. The main content may be the state space search, planning, knowledge representation techniques, Markov decision process, cognitive functions etc. to implement rational behavior.

Data Analytics [2+1]: This course prepares students to gather, describe, and analyze data, and use advanced Machine Learning tools. Topics include regression, clustering, decision trees, associations, correlations, data classification, prediction, data-clustering approaches, and outlier analysis etc. The aim of this course is to familiarize students with a new rapidly evolving field of Machine Learning and Data Mining, and provide practical knowledge experience in the analysis of real-world data.

Deep Neural Networks [2+1]: The aim of this course is to provide the knowledge of mathematical, statistical and computational techniques of building stable representations for highdimensional data such as multimedia data and texts. The course will include the modern concepts of Deep Artificial Neural Networks focusing on both theory and practical aspects for developing models, training, testing and deploying them for real world applications.